Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced electron injection and stability in organic light-emitting devices using an ion beam assisted cathode

Identifieur interne : 000D54 ( Main/Repository ); précédent : 000D53; suivant : 000D55

Enhanced electron injection and stability in organic light-emitting devices using an ion beam assisted cathode

Auteurs : RBID : Pascal:13-0108949

Descripteurs français

English descriptors

Abstract

In this article, we report a highly efficient bilayer OLED with a maximum luminance up to 62 000 cd/m2 and a threshold voltage of 3.8 V. The device structure is indium-tin-oxide (ITO)/N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD)/tris-(8-hydroxyquinoline) aluminum (Alq3)/LiF/Al. Ion beam assisted deposition (IBAD) process is used to deposit the aluminum cathode on the LiF layer. The IBAD process improves the OLED performance both by increasing the maximum luminance by a factor of 3 and by reducing the threshold voltage for light-emission. The IBAD process also enhances the microstructure and morphology of the Al layer and leads to denser and more homogeneous layers. The resulting highly-packed microstructure acts as a barrier to moisture and oxygen and inhibits their penetration into the Alq3 layer, leading to the OLED lifetime and stability increasing. In order to optimize the IBAD process parameters, prior to the OLED deposition, we have characterized aluminum films deposited on glass substrates by using atomic force microscopy and X-ray diffraction.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0108949

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Enhanced electron injection and stability in organic light-emitting devices using an ion beam assisted cathode</title>
<author>
<name sortKey="Chakaroun, M" uniqKey="Chakaroun M">M. Chakaroun</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Laboratoire de Physique des Lasers, UMR CNRS 7538, Université Paris 13</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Villetaneuse</settlement>
</placeName>
<orgName type="university">Université Paris 13</orgName>
</affiliation>
</author>
<author>
<name sortKey="Antony, R" uniqKey="Antony R">R. Antony</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Xlim-MINACOM-UMR 6172, Facult des Sciences et Techniques, 123 av. Albert Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Limousin</region>
<settlement type="city">Limoges</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fischer, A P A" uniqKey="Fischer A">A. P. A. Fischer</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Laboratoire de Physique des Lasers, UMR CNRS 7538, Université Paris 13</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Villetaneuse</settlement>
</placeName>
<orgName type="university">Université Paris 13</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ratier, B" uniqKey="Ratier B">B. Ratier</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Xlim-MINACOM-UMR 6172, Facult des Sciences et Techniques, 123 av. Albert Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Limousin</region>
<settlement type="city">Limoges</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moliton, A" uniqKey="Moliton A">A. Moliton</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Xlim-MINACOM-UMR 6172, Facult des Sciences et Techniques, 123 av. Albert Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Limousin</region>
<settlement type="city">Limoges</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, M W" uniqKey="Lee M">M. W. Lee</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Laboratoire de Physique des Lasers, UMR CNRS 7538, Université Paris 13</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Villetaneuse</settlement>
</placeName>
<orgName type="university">Université Paris 13</orgName>
</affiliation>
</author>
<author>
<name sortKey="Boudrioua, A" uniqKey="Boudrioua A">A. Boudrioua</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Laboratoire de Physique des Lasers, UMR CNRS 7538, Université Paris 13</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Villetaneuse</settlement>
</placeName>
<orgName type="university">Université Paris 13</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0108949</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0108949 INIST</idno>
<idno type="RBID">Pascal:13-0108949</idno>
<idno type="wicri:Area/Main/Corpus">001175</idno>
<idno type="wicri:Area/Main/Repository">000D54</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1293-2558</idno>
<title level="j" type="abbreviated">Solid state sci.</title>
<title level="j" type="main">Solid state sciences</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium</term>
<term>Aluminium compound</term>
<term>Atomic force microscopy</term>
<term>Bilayers</term>
<term>Cadmium</term>
<term>Charge carrier injection</term>
<term>Densification</term>
<term>Diamine</term>
<term>Diffusion barrier</term>
<term>Electron injection</term>
<term>Indium oxide</term>
<term>Ion beam</term>
<term>Ion beam assisted deposition method</term>
<term>Laser induced fluorescence</term>
<term>Lifetime</term>
<term>Light emission</term>
<term>Light emitting diode</term>
<term>Lithium fluoride</term>
<term>Microstructure</term>
<term>Morphology</term>
<term>Organic light emitting diodes</term>
<term>Quantum yield</term>
<term>Quinoline derivatives</term>
<term>TDS</term>
<term>Thin film</term>
<term>Tin oxide</term>
<term>Voltage threshold</term>
<term>X ray microscopy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Injection électron</term>
<term>Diode électroluminescente organique</term>
<term>Faisceau ionique</term>
<term>Bicouche</term>
<term>Diode électroluminescente</term>
<term>Cadmium</term>
<term>Seuil tension</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Diamine</term>
<term>TDS</term>
<term>Fluorescence induite par laser</term>
<term>Méthode IBAD</term>
<term>Aluminium</term>
<term>Composé de l'aluminium</term>
<term>Dérivé de la quinoléine</term>
<term>Fluorure de lithium</term>
<term>Emission optique</term>
<term>Microstructure</term>
<term>Morphologie</term>
<term>Barrière diffusion</term>
<term>Durée vie</term>
<term>Couche mince</term>
<term>Microscopie force atomique</term>
<term>Microscopie RX</term>
<term>Densification</term>
<term>Injection porteur charge</term>
<term>Rendement quantique</term>
<term>Substrat aluminium</term>
<term>Substrat verre</term>
<term>8560J</term>
<term>8115J</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cadmium</term>
<term>Aluminium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this article, we report a highly efficient bilayer OLED with a maximum luminance up to 62 000 cd/m
<sup>2</sup>
and a threshold voltage of 3.8 V. The device structure is indium-tin-oxide (ITO)/N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD)/tris-(8-hydroxyquinoline) aluminum (Alq3)/LiF/Al. Ion beam assisted deposition (IBAD) process is used to deposit the aluminum cathode on the LiF layer. The IBAD process improves the OLED performance both by increasing the maximum luminance by a factor of 3 and by reducing the threshold voltage for light-emission. The IBAD process also enhances the microstructure and morphology of the Al layer and leads to denser and more homogeneous layers. The resulting highly-packed microstructure acts as a barrier to moisture and oxygen and inhibits their penetration into the Alq3 layer, leading to the OLED lifetime and stability increasing. In order to optimize the IBAD process parameters, prior to the OLED deposition, we have characterized aluminum films deposited on glass substrates by using atomic force microscopy and X-ray diffraction.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1293-2558</s0>
</fA01>
<fA03 i2="1">
<s0>Solid state sci.</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Enhanced electron injection and stability in organic light-emitting devices using an ion beam assisted cathode</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHAKAROUN (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ANTONY (R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FISCHER (A. P. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RATIER (B.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MOLITON (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LEE (M. W.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BOUDRIOUA (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Physique des Lasers, UMR CNRS 7538, Université Paris 13</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Xlim-MINACOM-UMR 6172, Facult des Sciences et Techniques, 123 av. Albert Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>84-90</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>11118</s2>
<s5>354000506394190140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>34 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0108949</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid state sciences</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this article, we report a highly efficient bilayer OLED with a maximum luminance up to 62 000 cd/m
<sup>2</sup>
and a threshold voltage of 3.8 V. The device structure is indium-tin-oxide (ITO)/N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD)/tris-(8-hydroxyquinoline) aluminum (Alq3)/LiF/Al. Ion beam assisted deposition (IBAD) process is used to deposit the aluminum cathode on the LiF layer. The IBAD process improves the OLED performance both by increasing the maximum luminance by a factor of 3 and by reducing the threshold voltage for light-emission. The IBAD process also enhances the microstructure and morphology of the Al layer and leads to denser and more homogeneous layers. The resulting highly-packed microstructure acts as a barrier to moisture and oxygen and inhibits their penetration into the Alq3 layer, leading to the OLED lifetime and stability increasing. In order to optimize the IBAD process parameters, prior to the OLED deposition, we have characterized aluminum films deposited on glass substrates by using atomic force microscopy and X-ray diffraction.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15J</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Injection électron</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electron injection</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Inyección electrón</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Diode électroluminescente organique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Organic light emitting diodes</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Faisceau ionique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Ion beam</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Haz iónico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Bicouche</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Bilayers</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Light emitting diode</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Diodo electroluminescente</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cadmium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Cadmium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Cadmio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Seuil tension</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Voltage threshold</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Umbral tensión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Diamine</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Diamine</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Diamina</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>TDS</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>TDS</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Fluorescence induite par laser</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Laser induced fluorescence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Fluorescencia inducida por laser</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Méthode IBAD</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Ion beam assisted deposition method</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Método IBAD</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Aluminium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Aluminium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Aluminio</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Composé de l'aluminium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Aluminium compound</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Aluminio compuesto</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Dérivé de la quinoléine</s0>
<s2>FF</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Quinoline derivatives</s0>
<s2>FF</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Quinolina derivado</s0>
<s2>FF</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Fluorure de lithium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Lithium fluoride</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Litio fluoruro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Emission optique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Light emission</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Emisión óptica</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Microstructure</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Microstructure</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Microestructura</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Barrière diffusion</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Diffusion barrier</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Barrera difusión</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Durée vie</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Lifetime</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Tiempo vida</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Microscopie RX</s0>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>X ray microscopy</s0>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Microscopía rayos X</s0>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Densification</s0>
<s5>37</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Densification</s0>
<s5>37</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Densificación</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Injection porteur charge</s0>
<s5>38</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Charge carrier injection</s0>
<s5>38</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Inyección portador carga</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Rendement quantique</s0>
<s5>39</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Quantum yield</s0>
<s5>39</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Rendimiento quántico</s0>
<s5>39</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Substrat aluminium</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>8560J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>8115J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>084</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000D54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0108949
   |texte=   Enhanced electron injection and stability in organic light-emitting devices using an ion beam assisted cathode
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024